## Instructions for Creating a DynaGraph in GeoGebra

Open a new GeoGebra file with both an Algebra and Graphics view. To construct a DynaGraph you will need to first hide the $y$-axis.

To hide an axis in GeoGebra:

1. Place your cursor somewhere in the graphics window and right click.
2. In the pop up menu select "Graphics" at the bottom. This opens the Graphics settings.
3. Select $y$-axis tab, and then un-check the show $y$-axis box. Close the Graphics settings window.

To construct a DynaGraph:

1. You should have a graphics window with only a horizontal number line ( $x$-axis). If the number line is not centered you can select the "Move Graphics View" button $\stackrel{\leftrightarrow}{*}$ and click and drag in the Graphics window to center it. (Note: Clicking on the number line will change the scale of the axis.)
2. Place a point on the number line using the new point tool ${ }^{\bullet}{ }^{\mathbf{A}}$ and placing the point on the number line. This point is attached to the axis and can only slide horizontally. This will be your independent variable.
3. To get a second horizontal number line graph the line $y=2$ by entering $y=2$ in the input bar. Input: $\mathbf{y = 2}$ (You can place your horizontal line anywhere. The line $y=2$ was chosen because it is a "nice" distance from the $x$-axis.)
4. In the input bar, enter the function formula that you want represented by this DynaGraph. For this example, use " $f(x)=-3 x$ ". Input: $f(x)=-3 \mathrm{x}$ Notice the graph of the function appears in the graph window.
5. Since we do not want a Cartesian plane representation of the graph of this function, hide the graph by deselecting the circle next to the function formula in the algebra window.
```
- Function
    f(x)=-3x
```

6. Now we need to graph the point that is made up of the $x$-value associated with the function formula, $f(x)=-3 x$, evaluated at the value on which the point A sits on the number line and $y$-value of 2 so that this new point (lets call it B ) sits on our new number line. To do this, enter "B:(f(x(A)),2)" in the input bar.
7. Our final step is to draw in the vector that connects point $A$ and point $B$. To do this enter "vector $[\mathrm{A}, \mathrm{B}]$ " in the input bar. Input: vector $[\mathrm{A}, \mathrm{B}]$

8. Hide the Algebra window and Input Bar. Hide the labels for the vector and the line. You now have a DynaGraph!!

